Journal of Organometallic Chemistry, 94 (1975) 425–440 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

MASS SPECTROMETRY OF π -COMPLEXES OF TRANSITION METALS

III*. MASS SPECTRA OF SOME π -CYCLOPENTADIENYL COMPLEXES OF SEVEN-COORDINATE RHENIUM

V.F. SIZOL, Yu.S. NEKRASOV, Yu.V. MAKAROV and N.E. KOLOBOVA

Institute of Organo-Element Compounds, Academy of Sciences, Vavilova Str. 28, 117312 Moscow (U.S.S.R.)

(Received March 2nd, 1975)

Summary

The mass spectra of π -RC₅H₄Re(CO)₂XY (R = H, CH₃, COOCH₃, X, Y = H, CH₃, COCH₃, Br, I, HgCl) have been studied. A successive expulsion of carbonyl groups, a common fragmentation path for cyclopentadienyl metal carbonyls, is observed in addition to the parallel elimination of substituents X and Y from the molecular ions of seven-coordinate rhenium complexes. Loss of a hydrogen molecule from the [M - 2CO]⁺ ion is a characteristic of the fragmentation of σ -methyl complexes.

Recently we reported the synthesis of certain π -cyclopentadienyl complexes of seven-coordinate rhenium [1]. The main fragmentation paths under electron impact are now considered for the compounds of general formula π -RC₅H₄Re-(CO)₂XY; namely π -C₅H₅Re(CO)₂(CH₃)₂, π -C₅H₅Re(CO)₂Br(CH₃), π -C₅H₅Re(CO)₂-I(CH₃), π -C₅H₅Re(CO)₂I(COCH₃), π -C₅H₅Re(CO)₂Br₂, π -C₅H₅Re(CO)₂BrH, π -C₅H₅Re(CO)₂IH, π -C₅H₅Re(CO)₂I(HgCl), π -(CH₃C₅H₄)Re(CO)₂Br₂, π -(CH₃OOC-C₅H₄)Re(CO)₂Br₂ and π -IC₅H₄Re(CO)₂Br₂.

The calculated monoisotopic^{**} spectra of the above compounds, as well as the metastable transitions observed are represented in the Tables 1-10. A relatively high stability of the molecular ions of all complexes permits an unambiguous determination of the molecular weights of such compounds.

A successive expulsion of both carbonyl groups resulting in formation of the ions $[RC_5H_4ReXY]^*$ is a typical feature for all complexes studied except π -C₅H₅Re(CO)₂(CH₃)₂ and π -C₅H₅Re(CO)₂I(HgCl). Most cyclopentadienyl metal carbonyls of the type C₅H₅M(CO)_nX_m (where X is a σ -bonded ligand Ar, Alk,

^{*} Part I. The influence of σ -bonded ligands on the fragmentation of π -allyl derivatives of iron carbonyl [2]. Part II. Mono- and di-cyclopentadienyl derivatives of titanium [3].

^{**} The intensities are corrected by an isotopic composition of C. Cl. Br. Re and Hg.

426

TABLE 1

MASS SPECTRUM OF C5H5Re(CO)2(CH3)2

Ion	m/e	Rel. inter	Rel. intensity		
· · · · · · · · · · · · · · · · · · ·		50 eV	30 eV	15 eV	
M ⁺	338	62	56	100	
$M - CH_3^+$	323	12	11	14	
$M - CO^{\dagger}$	310	47	49	92	
CeHeRe(CO)(CHa) ⁺	308	10	10	12	
C ₇ H ₇ Re(CO) ⁺	306	16	17	16	
$M - CH_3 - CO^+$	295	21	21	10	
$M - CO - CH_4^+$	294	68	74	69	
CrHrBe(CO) ⁺	293	75	64	•••	
CeHeRe(CO) ⁺	280	.5	8		
C-HARe(CO) ⁺	279	۰ ۸	3		
CaHaRe ⁺	278	9.4 	22		
C-H_Re ⁺	277	24 A	<u>с</u> е Л		
C-H-RA	276	· 5	7		
$M = C \Omega = C H_2 = C \Omega^+$	267	3	1		
$C_{c}H_{a}R_{c}^{+}$	266	100	100	3	
Concentration of the second se	265	54	50	J	
C-H-Re ⁺	265	22	18		
C-H-Re ⁺	263	A1	22		
C-H-Be ⁺	260		<u></u>		
C-H-Ra ⁺	252		14		
C-H-Pa ⁺	252	21	14		
C-H-Pa ⁺	251	*	9		
0 ND- ⁺	200	10	3		
	240	4	2		
CARARE	239	12	3		
	238	10	· 1		
C4H2Ke	237	. 6			
C ₄ HRe	236	4	_		
C ₃ H ₃ Re	226	7	1		
C ₃ H ₂ Re	225	11			
C ₃ HRe	224	10			
C ₂ H ₂ Ke	213	14			
C ₂ HRe	212	11			
CHRe	200	8		•	
CRe	199	2			
Re 2+	187	10			
M ⁻	169	2			
M-CH3 ⁴	161.5	2			
C ₆ H ₆ Re(CO)(CH ₃) ²⁺	154	3			
C7H7Re(CO)2+	153	7			
$M - CO - CH_4^{2+}$	147	12		· .	
C ₆ H ₆ Re(CO) ²⁺	146.5	8			
C7H7Re ²⁺	139	10			
C6H7Re2+	133	14			
C ₆ H _c Re ²⁺	132.5	7			
CeH2Re2+	132	14			

(continued)

ċ.

TABLE 1 (continued)

Metastable transitions

m/e	Process	Neutral fragmen	nt lost
304	308→306+2	H ₂	
284	338 -+ 310 + 28	co	
279	310→294+16	CH4	
269	323 -+ 295 + 28	CO	
254	308 → 280 + 28	со	
252	306 → 278 + 28	CO	
240	294 → 266 + 28	CO	
	265 → 252 + 13	CH	
226	$280 \rightarrow 252 + 28$	· co	
	252 → 239 + 13	CH	-
213	239 → 226 + 13	СН	
200	226 → 213 + 13	CH	
187	$213 \rightarrow 200 + 13$	СН	
120	294 ²⁺ → 266 ²⁺ + CO		

427

TABLE 2

MASS SPECTRUM OF C5H5Re(CO)2Br(CH3)

Ion	m/e	Rel. intensity 50 eV
	402	64
$M - CH_3^+$	387	9
$M - CO^{+}$	374	96
$M - CH_3 - CO^{\dagger}$	359	16
$M - 2CO^+$	346	71
$M - 2CO - H_2^+$	344	100
$M - 2CO - 2H_2^+$	342	27
C ₅ H ₅ ReBr ⁺	331	74
C ₅ H ₃ ReBr	329	14
C ₅ HReBr ⁺	327	-6
$M - Br^{+}$	323	5
C4H4ReBr ⁺ -	318	10
C4H3ReBr ⁺	317	6
C ₄ H ₂ ReBr	316	3 ÷
$M - Br - CH_3^+$	308	8
C ₃ H ₃ ReBr ⁺	305	33
C ₃ HReBr ⁺	303	8
$M - Br - CO^{\dagger}$	295	5
C ₆ H ₆ Re(CO) ⁺	293	17
C ₂ H ₂ ReBr ⁺	292	8
C5H5Re(CO) [⁺]	280	14
CHReBr	279	6
C ₆ H ₆ Re ⁺	265	23
C ₆ H ₅ Re ⁺	264	14
C ₆ H ₄ Re	263	9
C5H5Re ⁺	252	13
C ₅ H ₃ Re ⁺	250	2
C4H4Re ⁺	239	5
C ₄ H ₃ Re ⁺	238	6
C ₃ H ₃ Re [†]	226	3
C ₃ H ₂ Re ⁺	225	6
C ₃ HRe ⁺	224	6
C ₂ H ₂ Re [†]	213	3
C ₂ HRe [†]	212	1
CHRe ⁺	200	2

428

TABLE 3

MASS SPECTRUM OF C5H5Re(CO)2I(CH3)

Ion	m/e	Rel. inter	Rel. intensity		
		50 eV	30 eV	15 eV	
M ⁺	450	100	100	100	
$M - CH_3^+$	435	21	22	9	
$M - CO^{\dagger}$	422	80	88	55	
$M - CH_3 - CO^+$	407	17	18	, · ·	
M-2CO ⁺	394	40	49	9	
$M - 2CO - H_2^+$	392	65	67	3	
$M = 2CO = 2H_2^+$	390	32	20	2	
C ₅ H ₅ Rel ⁺	379	56	56	2	
C ₅ H ₃ ReI ⁺	377	18	16		
C4H4Rel ⁺	366	5	4		
C4H3Rel ⁺	365	4			
C4H2ReI ⁺	364	2			
C4HRel ⁺	363	1			
C3H3Re1 ⁺	353	20	11		
C ₃ H ₂ Rel ⁺	352	7	•		
C ₃ HReI ⁺	351	13	3		
C2HRel ⁺	339	4	2		
C ₂ ReI ⁺	338	3			
CHRel ⁺	327	10			
$M - 1^+$	323	2	2	1	
$M - HI^+$	322	2	2	1	
Rel	314	4			
$M - I - CH_3^+$	308	5	5	2	
$M - I - CO^{\dagger}$	295	5	4		
C6H7Re(CO)+	294	3	2 .		
C6H6Re(CO)	293	22	28	1	
CsHsRe(CO)+	280	7	7		
C.H.R.	266	9	8		
CAHARe	265	20	22	2	
C _c H _s Re ⁺	264	6	4		
CeHaRe	263	16	12		
Callane	252	8	7		
C ₄ H ₁ Re ⁺	250	5	2		
C ₄ H ₄ Re ⁺	239	5	2		
C4H3Re ⁴	238	7	3		
C4H2Re ⁺	237	2			
C3H3Re ⁺	226	4			
C ₃ H ₂ Re ⁺	225	11			
C ₃ HRe ⁺	224	11			
$C_2H_2Re^+$	213	4			
C2HRe ⁺	212	5			
CHR.e ⁺	200	7			
ReH2 ⁺	189	8			
ReH	188	7			
Re ⁺	187	4			
x*	127	5	3		

•

TABLE 4

MASS SPECTRUM OF C5H5Re(CO)2I(COCH3)

Ion	m/e	Rel. inte	Rel. intensity		
		50 eV	30 eV	15 eV	
M ⁺	478	30	38	86	
$M - CH_3^+$	463	2	2	3	
M-co ⁺	450	18	22	79	
$M - COCH_3^+$	435	20	23	31	
$M - 2CO^{+}$	422	12	14	28	
CcHcRe(CO)I ⁺	407	29	33	13	
C-HoRel ⁺	304	5	8	10	
C-H-Rel ⁺	309	22	25		
C H Rel ⁺	300		0	•	
C-H-Rel ⁺	970	70	80	e	
C-H-Rei ⁺	313	10	09	O	
C-HR et ⁺	375	22 ·	<u></u>		
C.H. Bat	375	4	4		
CANAREI	300	2	2		
C4H3Rel	365	2	2		
C4H2Rel	364	2	2		
C ₄ HReI	363	1	1		
C ₃ H ₃ ReI	353	26	22	2	
M - 1, C ₃ HRel	351	20	16	31	
C ₂ H ₂ ReI	340	2	2		
C ₅ H ₅ Re(CO) ₃ ⁺	336	50	51	100	
CHRel ⁺	327	2	2		
C ₅ H ₅ Re(CO)(COCH ₃) ⁺	323	9 .	11	7	
C ₅ H ₃ Re(CO)(COCH ₃) ⁺	321	10	12	11	
C5H5Re(CO)2 ⁺	308	36	43	37	
$C_5H_5Re(COCH_3)^+$	295	18	22	6	
C ₅ H ₃ Re(COCH ₃) ⁺	293	29	38	3	
CsHsRe(CO) ⁺	280	100	100	15	
CaHaRe(COCHa) ⁺	269	7	10		
CeHeBe(CHa) ⁺	267	3	2		
CeHeRe ⁺	265	17	22		
CcHaRe ⁺	263	0	10		
C-H-Ro ⁺	252	79	75	a '	
C-H-Pa ⁺	252	10	15	4 .	
C. WD.	250	28	28	1 A.	
	248	12	3		
CANARE	239	4	3		
C4H3Re	238	5	2		
C ₃ H ₃ Ke	226	26	19		
C ₃ H ₂ Re	225	36	9	· · · · · ·	
C ₃ HRe	224	42	11	•	
C ₂ H ₂ Re	213	5	1	· · · · ·	
C ₂ HRe	212	9	1		
н	128	31	36	31	
I [*]	127	19	18		

(continued)

TABLE 4 (continued)

Metastable transitions

т/е	Process	Neutral fragment lost	
424	478 → 450 + 28	со	
396	478 → 435 + 43	COCH ₃	
	450 → 422 + 28	co	
381	435 → 407 + 28	- CO	
368	422 → 394 + 28	CO	
353	407 → 379 + 28	CO	
297	351 → 323 + 28	÷ CO	
282	336 → 308 + 28	CO	
269	323 → 295 + 28	CO	
258	478 -+ 351 + 127	l' I e	
254	308 → 280 + 28	СО	
227	280 → 252 + 28	CO	
		· · · · · · · · · · · · · · · · · · ·	

TABLE 5

MASS SPECTRUM OF C5H5Re(CO)2Br2

•

Ion	m/e	Rel. intensi	Rel. intensity		
		50 eV	30 eV	15 eV	
<i>M</i> ⁺	468	13	5	15	
$M - CO^{+}$	440	25	15	32	
$M - 2CO^{+}$	412	49	33	14	
M - Br	387	30	28	100	
$M - Br - CO^{+}$	359	23	28	33	
ReBr2 ⁺	347	3			
C ₅ H ₅ ReBr ⁺	331	100	100	18	
C ₅ H ₃ ReBr ⁺	329	23	15	3	
C5H5Re(CO)2	308	9	9	7	
C ₅ H ₃ Re(CO) ₂	306	8	6	1	
C ₃ H ₃ ReBr	305	30	14	2	
C ₃ H ₂ ReBr ⁺	304	16	4		
C3HReBr	303	16	8		
C ₅ H ₅ Re(CO) ⁺	280	33	27	2	
CHReBr	279	10			
ReBr ⁺	266	3			
C ₅ H ₅ Re ⁺	252	21	17	2	
C ₅ H ₃ Re [†]	250	9	6	1	
C ₅ HRe ⁺	248	5			
C ₃ H ₃ Re ⁺	226	11 .	3		
C ₃ H ₂ Re ⁺	225	11	3		
C ₃ HRe ⁺	224	25	6		
C ₃ Re ⁺	223	2			
HBr ⁺	80	34	53		
Br ⁺	79	15	18	· · · · ·	

Metastable transitions

m/e Process		Neutral fragment lost		
414	468 → 440 + 28	СО		
386	440 412 + 28	CO		
254	308-+280+28	CO		
227	280 → 252 + 28	CO		

TABLE 6

MASS SPECTRA OF C5H5Re(CO)2(X)H (50 eV)

Ion	X = Br		X = I	
	m/e	Rel. intensity	m/e	Rel. intensity
<u>M</u> ⁺	388	19	436	13
$M - CO^{+}$	360	31	408	15
$M - 2CO^+$	332	50	380	15
$M = 2CO - H^+$	331	19	379	11
$M = 2CO - C_2 H_2^+$	306	6	354	5
C ₃ H ₃ ReX ⁺	· 305	4	353	6
C ₅ H ₅ Re(CO) ₃ ⁺	336	66	336	68
$C_5H_5Re(CO)_2^+$	308	33	308	35
C ₅ H ₅ Re(CO) ⁺	280	100	280	100
C.H.Re ⁺	252	57	252	60
CcHaRe ⁺	250	11	250	20
C ₃ H ₃ Re ⁺	226	6	226	14
C ₂ HRe ⁺	224	3	224	20
CHRe ⁺	200		200	8
HX⁺	80	5	128	7

431

TABLE 7

MASS SPECTRUM OF C5H5Re(CO)2I(HgCl)

Ion	m/e	ReL intensity 50 eV
	672	
$M - HgCl^+$	435	31 -
C ₅ H ₅ Re(CO)1 ⁺	407	38
C ₅ H ₅ ReI ⁺	379	59
C5H3ReI ⁺	377	14
C3H3Rel ⁺	353	16
C3H2ReI ⁺	352	. 6 .
C ₃ HReI [†]	351	5
C ₅ H ₅ Re(CO) ₃ ⁺	336	56
C ₅ H ₅ Re(CO) ₂ ⁺	308	25
C ₅ H ₅ ReCl ⁺	287	28
C ₅ H ₃ ReCl ⁺	285	9
C ₅ H ₅ Re(CO) ⁺	280	100
C ₅ H ₅ Re ⁺	252	53
C ₅ H ₃ Re ⁺	250	16
C ₃ H ₃ Re [†]	226	20
C ₃ H ₂ Re ⁺	225	23
C ₃ HRe ⁺	224	18
Hg	202	150
Re	187	25
HI ⁺	128	22
I ⁺	127	14

32 4 2 2	COROTOINE	OF OH.C.	17. D ./ CON. D-
arros	SPECIAUM	UP CHICK	

m/e

TA	BLE	8	

432

Ion

		50 eV	30 eV	15 eV
M*	482	7	5	9
$M - CO^+$	454	22	19	31
$M - 2CO^{+}$	426	44	44	14
$M - Br^+$	401	31	36	100
$M - Br - CO^+$	373	21	26	24
CH3C5HaReBr+	345	98	100	17
C ₆ H ₆ ReBr ⁺	344	100	86	9
C _c H _c ReBr ⁺	343	59	59	3
C ₆ H ₄ ReBr ⁺	342	23	25	2
C ₆ H ₃ ReBr ⁺	341	4	7	1
C ₅ H ₅ ReBr ⁺	331	6	3	
$M - 2Br^{+}$	322	3	5	
CH ₃ C ₃ H ₂ ReBr ⁺	319	3	4	
CH ₃ C ₃ HReBr ⁺	318	12	5	
CH ₃ C ₃ ReBr ⁺	317	40	19	
C3H3ReBr	305	6	2	
C ₃ HReBr ⁺	303	4		
CH ₃ C ₅ H ₄ Re(CO) ⁺	294	17	14	
C ₆ H ₆ Re(CO) ⁺	293	10		
C ₆ H ₅ Re(CO) ⁺	292	3	. 1.	
CHReBr ⁺	279	3		
CH ₃ C ₅ H ₄ Re ⁺ , ReBr ⁺	266	12	11	2
C ₆ H ₆ Re ⁺	265	10	10	1
C ₆ H ₅ Re ⁺	264	7	4	
C4H3Re	238	5		
C4HRe [*]	236	3		
C ₃ H ₂ Re	225	3		
C ₃ HRe	224	7		
C ₂ H ₂ Re ⁺	213	8		
C ₂ HRe ⁺	212	9		
Re ⁺	187	6		
C ₆ H ₆ ReBr ²⁺	172.5	11		
C ₆ H ₅ ReBr ²⁺	172	12		
HBr	80	71	90	
Br ⁺ , CH ₃ C ₅ H ₄ ⁺	79	23	19	

Rel. intensity

Metastable transitions

m/e	Process	Neutral fragment lost	
427	482 → 454 + 28	СО	
399	454 → 426 + 28	СО	
346	401 -+ 373 + 28	CO	
277	426 → 344 + 82	HBr	

.

MASS SPECTRUM OF CH3OOCC5H4Re(CO)2Br2

Ion	m/e	Rel. intensity			
		50 eV	30 eV	15 eV	
м ⁺	526	20	23	32	
$M - co^+$	498	45	53	100	
M - MeO ⁺	495	3	3		
$M - 2CO^{+}$	470	100	100	25	
$M - MeQ - CQ^{\dagger}$	467	3	3		
$M - Br^{\dagger}$	445	98	28	89	
$M = 2CO = CH_{2}O^{+}$	440	10	14		
$M = 2CO = COCH_{2}^{+}$	427	30	14		
$M = Br = CO^{+}$	417	13	10	90	
CeHaReBra ⁺	411	13	14	20	
$M - Br - 2CO^{\dagger}$	389	11	0. 35	19	
CH-OReBra ⁺	279	40	55	14	
$M \rightarrow 2D^{+}$	310	3	5		
	300	4	4		
C U COP P-*	301	40	32		
C ₅ H4COKeBr	358	63	35		
ReBr ₂	347	6	_		
C ₅ H4OReBr	346	6	2		
C ₅ H ₃ OReBr	345	4	1		
$M = 2Br - CO^{2}$	338	1	2		
CsH5ReBr	331	64	30		
C ₅ H ₄ ReBr	330	19	7		
C ₅ H ₃ ReBr	329	31	4		
C ₅ HReBr ⁺	327	4			
C ₄ H ₆ ReBr	320	17	2		
$M = 2Br - 2CO^{-1}$	310	31	21		
C ₃ H ₃ ReBr [*]	305	21	2		
C ₃ H ₂ ReBr ⁺	304	41	2		
C ₃ HReBr ⁺	303	8			
CH ₂ OReBr [↑]	296	17	5		
CH3OC5H4Re ⁺	282	15	10		
CH ₃ OC ₅ H ₃ Re ⁺	281	34	25		
C5H4COReH ⁺	280	9	7		
C ₅ H ₄ CORe ⁺	279	13	7		
ReBr ⁺	266	5			
M ²⁺	253	3			
C ₅ H ₅ Re ⁺	252	14	3	and the second	
CsHaRe ⁺	251	8			
C5H3Re+	250	2			
$M = CO^{2+}, C_5H_2Re^+$	249	3			
C5HRe ⁺	248	8			
$M - 2CO^{2+}$	235	12			
C ₃ H ₃ Re ⁺	226	3		-	
CaH2Re ⁺	225	13			
C3HRe ⁺	224	25		•	
CeHACO ⁺	92	28	1A		
HBr	80	60	30		
Br ⁺	79	91	4		
		~ _	-		

(continued)

434		

mant n A	/
1 A D L P. 3	• • • • • • • • • • • • • • • • • • • •
	(contractory)

Metastable transitions

m/e	Process	Neutral fragment lost	
443	498 → 470 + 28	СО	
419	526 → 470 ÷ 56	2CO	
411	$470 \rightarrow 440 + 30$	CH ₂ O	
390	445 → 417 ÷ 28	co	•
387	470 -> 427 + 43	COCH3	
375	526 - 445 + 81	Br	
362	417 → 389 + 28	CO	
312	366 → 338 + 28	CO	
305	470 → 378 + 92	C ₅ H ₄ CO	
292	440 → 358 + 82	HBr	
284	$338 \rightarrow 310 + 28$	CO	-
256	$310 \rightarrow 282 + 28$	CO	
253	$310 \rightarrow 280 + 30$	CH ₂ O	
227	$279 \rightarrow 251 + 28$	CO	
218	358 → 279 + 79	Br	
	358 → 279 + 79	B2	

py₃ etc.) are known to undergo the expulsion of X, as well as a fragmentation of both the cyclopentadienyl ring and a ligand X, only from the ion $[C_5H_5MX_m]^*$, that is after the loss of all carbonyl groups [4]. In contrast, the molecular ions of seven-coordinate complexes of rhenium together with expulsion of carbon monoxide eliminate in parallel the substituents X and Y yielding the ions $[RC_5H_4 Re(CO)_nY]^*$ and $[RC_5H_4Re(CO)_nX]^*$ (n = 1,2), the latter ions in some cases being of higher intensity than the ions $[M - CO]^*$.

Since a ready elimination of the CO group in preference to other π - and σ -bonded ligands is interpreted in terms of a low strength of a metal—CO bond [5], a competitive loss of the ligands X and Y (Br, I, CH₃, COCH₃) is due to a low (compared with metal—CO) bond strength of the metal—X and metal—Y bonds.

A probability of substituent elimination from the rhenium atom, which is defined as the ratio of the intensity of the ion $[M - X]^{*}$, $[M - Y]^{*}$ or $[M - CO]^{*}$ to the total intensity of these ions $(\Sigma = [M - X]^{+} + [M - Y]^{+} + [M - CO]^{+})$ depends on the nature of the substituent, as well as on the nature of its neighbours. Based on comparison of the values $[M - CO]^{+}/\Sigma$, $[M - Br]^{+}/\Sigma$ in the mass spectrum of C₅H₅Re(CO)₂Br₂ and the values $[M - CO]^{+}/\Sigma$ and $[M - CH_3]^{+}/\Sigma$ in the mass spectrum of $C_5H_5Re(CO)_2(CH_3)_2$, as well as the values $[M-CO]^*/\Sigma$, $[M-I]^{/\Sigma}$ and $[M-CH_3]^{/\Sigma}$ in the spectrum of $C_5H_5Re(CO)_2I(CH_3)$ (Table 11), the substituents are placed in the following series according to the elimination facility: $Br > CO > CH_3 > I$. It follows from the analysis of the mass spectrum of $C_5H_5Re(CO)_2Br(CH_3)$, however, that substitution of the bromine atom by a methyl group increases the intensity of the $[M - CO]^+$ ions compared with the $[M-Br]^+$ ions. At the same time, the insertion of the methyl group into the cyclopentadienyl ring does not affect the process of CO elimination. However, an increase in the ratio $[M - CO]^*/\Sigma$ is observed when passing to the derivatives of the seven-coordinate rhenium containing the methoxycarbonyl or iodine substituent on the ring.

It should be noted from the comparison of the mass spectra of $C_5H_5Re-(CO)_2Br(CH_3)$ and $C_5H_5Re(CO)_2I(CH_3)$ that the stability of the molecular ion

TABLE 10

MASS SPECTRUM OF IC5H4Re(CO)2Br2

Ion	m/e	Rel. intensity		
		50 eV	30 eV	15 eV
M ⁺	594	14	8	37
$M - CO^{+}$	566	51	31	98
$M - 2CO^{+}$	538	100	75	51
$M - Br^+$	513	25	30	100
IC5H4Re ⁺	505	40	46	32
$M - Br - CO^+$	485	35	32	47
IC3H2ReI ⁺	479	14	19	19
$M - Br - 2CO^+$	457	95	100	34
C5H5Re(CO)2I [↑]	435	18	11	62
C ₅ H ₃ Re(CO) ₂ I ⁺	433	17	20	32
IC ₃ H ₂ ReBr ⁺	431	25	30	20
$M - 2CO - I^{+}$	411	79	75	25
C ₅ H ₅ Re(CO) ₂ Br ⁺	387	12	10	15
C5H3Re(CO)2Br	385	12	11	18
C ₅ H ₅ Rel [*]	379	35	27	12
IC5H4Re ⁺	378	28	36	26
C ₅ H ₃ Rel ⁺	377	36	20	20
C ₅ H ₅ Re(CO)Br ⁺	359	6	5	6
IC ₃ H ₂ Re ⁺	352	40	49	22
ReBr2 ⁺	347	5		
C ₅ H ₅ ReBr ⁺	331	24	27	10
C ₅ H ₄ ReBr ⁺	330	27	40	23
C ₅ H ₃ ReBr ⁺	329	54	52	21
C ₃ H ₃ ReBr ⁺	305	30	18	7
CaHaReBr ⁺	304	67	64	19
C ₃ HReBr ⁺	303	28	17	
C _c H ₄ Re ⁺	251	7	6	
C ₅ H ₃ Re ⁺	250	3	4	
C _c H ₂ Re ⁺	249	12	5	÷
C _c HRe [†]	248	24	5	
CaHaRe ⁺	239	. 6	5	
CoHoRe ⁺	225	27	13	6
C-HRe ⁺	220	53	13	8
 HI ⁺	128	20	26	0
	197	11	19	
- · ·	80	95	100	•
Br ⁺	79	38	48	

of the iodine compound is much higher than that of the bromide derivative. A similar tendency has already been noted by us for π -allyl complexes of iron, π -AllFe(CO)₃X, where the stability of the molecular ion when X = I is several orders higher than when X = Cl [2]. This increase in relative intensity of the molecular ion of the iodine derivative reflects the well known stabilizing effect of iodine [6,7]. In addition to the effect of the substituents on the loss of carbon monoxide, substitution of a methyl group in the molecule results in specific fragmentation paths for these compounds.

R Y	X	ХҮ	[<i>M</i> −X] ⁺ /Σ		$[M - Y]^{\dagger} \Sigma$		[M — CO] ⁺ /∑		$[M-X]^+ + [M-Y]^+ \Sigma$	
		15 eV	50 eV	15 eV	50 eV	15 eV	50 eV	15 eV	50 eV	
н	Br	Br	1.1	1			0.24	0.45	0.76	0.55
H	Br	CE3	0.16	0.05	0.03	0.08	0.84	0.87	0.16	0.13
H	I.	CH ₃	0.02	0.02	0.14	0.20	0.85	0.78	0.15	0.22
H	CH3	CH ₃					0.87	0.80	0.13	0.20
H	I	COCH ₃			0.22	0.34	0.56	0.31		
CH ₃	Br	Br					0.24	0.42	0.76	0.58
CH300C	Br	Br					0.53	0.62	0.47	0.38
I	Br	Br					0.49	0.67	0.51	0.33

The expulsion of a hydrogen molecule from the ion $[C_5H_5ReX(CH_3)]^*$, giving the ion $[C_6H_6ReX]^*$ is a common process for all σ -methyl complexes of seven-coordinate rhenium (Scheme 1). Such a process appears to be a general one for π -complexes containing a methyl group bonded to a metal atom. The

SCHEME 1*

 $\begin{bmatrix} C_{5}H_{5}Re(CO)_{2}X(CH_{3}) \end{bmatrix}^{+} - \frac{-CO}{*} \begin{bmatrix} C_{5}H_{5}Re(CO)X(CH_{3}) \end{bmatrix}^{+} \\ & \times & -CO \\ \begin{bmatrix} C_{6}H_{6}ReX \end{bmatrix}^{+} - \frac{-H_{2}}{*} \begin{bmatrix} C_{5}H_{5}ReX(CH_{3}) \end{bmatrix}^{+} \\ m|e \ 344 \ (X = Br) \\ m|e \ 392 \ (X = I) \end{bmatrix}$

molecular ion of π -indenyl—Mo(CO)₃CH₃ was shown [8] to eliminate three CO molecules and then a hydrogen molecule yielding the $[C_{10}H_8Mo]^{\uparrow}$. It has been pointed out that the loss of the hydrogen molecule is from the σ -bonded methyl group.

The ion $[C_5H_5FeCH_3]^*$ which is formed by expulsion of three carbonyl groups from the ion $[C_5H_5Fe(CO)_2(COCH_3)]^*$ also eliminates a hydrogen molecule yielding the ion $[C_6H_6Fe]^*$ [9]. The formation of ions with 6π -electron systems, of the type $[C_6H_6M]^*$, appears to be a governing factor in this process.

Successive expulsion of three CO molecules from $C_5H_5Re(CO)_2I(COCH_3)$ results in the ion $[C_5H_5ReICH_3]^+$ which eliminates a hydrogen molecule to form the ion $[C_6H_6ReI]^+$ (*m/e* 392). This indicates that ions $[M-3CO]^+$ present in

^{*} Here and in the following schemes, the asterisks denote degradation routes identified through the respective metastable peaks.

the mas spectrum of $C_5H_5Re(CO)_2I$ (COCH₃) and $[M-2CO]^+$ in the spectrum of $C_5H_5Re(CO)_2$ (CH₃) are structurally similar.

The presence of two methyl groups σ -bonded to the metal atom results in alternative fragmentation paths for the molecular ion of $C_5H_5Re(CO)_2(CH_3)_2$. A successive elimination of carbonyl groups from the molecular ion, which is a typical process for carbonyl complexes, is absent in this case. Instead a consecutive expulsion of CO, CH_4 and CO is observed which leads to the base ion $[C_6H_7Re]^+$ in the spectrum. A loss of the second carbonyl group proceeds, therefore, only after elimination of a methane molecule from the ion $[M - CO]^+$ (Scheme 2).

SCHEME 2

Further degradation of $[C_6H_7Re]^+$ results in the ions $[C_6H_6Re]^+$ (*m/e* 265), $[C_6H_5Re]^+$ (*m/e* 264), $[C_6H_4Re]^+$ (*m/e* 263) and $[C_6H_3Re]^+$ (*m/e* 262). Another competitive fragmentation path of the ion $[C_5H_5Re(CO)(CH_3)_2]^+$ (*m/e* 310) consists of successive elimination of two hydrogen molecules with the formation of the ions with *m/e* 308 and *m/e* 306 (Scheme 3).

SCHEME 3

Decarbonylation of the ion $[C_7H_7Re(CO)]^*$ leads to the ion $[C_7H_7Re]^*$ further fragmentation of which consists of a stepwise elimination of CH (Scheme 4).

The ions $[C_6H_6Re]^+$, formed from the molecular ions of $C_5H_5Re(CO)_2(X)$ -(CH₃), undergo a similar degradation to that in Scheme 4. One can assume that a consecutive loss of methine groups proceeds from the linear form of the ion $[C_7H_7Re]^+$. It is to be noted that a similar fragmentation path is not realized in the mass spectrum of $C_5H_5Re(CO)_3$ [9] where the ion $[C_5H_5Re]^+$ degrades due to expulsion of acetylene and hydrogen molecules yielding the $[C_3H_3Re]^+$ and $[C_5H_3Re]^+$ ions, respectively. A different degradation of the ions $[C_5H_5Re]^+$, formed in the course of fragmentation of the $C_5H_5Re(CO)_3$ and σ -methyl complexes of sevencoordinate rhenium, suggests they are structurally dissimilar. The occurrence of the ions $[C_nH_nRe]^+$ (n = 1-7) in the mass spectrum is thus witness to the presence of a methyl substituent σ -bonded to the rhenium atom in the parent molecule.

The molecular ions of hydrides, $C_5H_5Re(CO)_2BrH$ and $C_5H_5Re(CO)_2IH$ decompose only in the manner due to expulsion of the CO groups. A competitive elimination of a hydrogen atom is not observed. The loss of a H atom proceeds only from the ion $[C_5H_5ReXH]^*$. A similar behaviour of transition metal hydrides has earlier been noted by King [9] in the case of $C_5H_5WH(CO)_3$ where the elimination of a CO molecule from the molecular ion is followed by the loss of the hydrogen atom. The presence of the abundant m/e 336 peaks in the spectra of hydrides studied is apparently due to a small impurity, the more volatile cyclopentadienylrheniumtricarbonyl.

The signal due to the ion $[C_5H_5Re(CO)_2I]^+$ (*m/e* 435) in the spectrum of $C_5H_5Re(CO)_2I(HgCl)$ is the highest *m/e* ratio, while the M^+ peak is not observed. This is witness to a low bond strength for the Re—Hg bond. It should be noted that the ions $[M - Hal]^+$ containing the metal—metal bond were present in the mass spectra of $C_5H_5Mo(CO)_3HgCl$ [10] and $C_5H_5Mo(CO)_3HgI$ [11].

As was observed for the corresponding molybdenum complexes, a migration of the chlorine atom to the metal resulting in the ions $[C_5H_5ReCl]^+$ (*m/e* 287) and $[C_5H_3ReCl]^+$ (*m/e* 285) is a characteristic feature of fragmentation of the $C_5H_5Re(CO)_2$ IHgCl molecule.

It follows from the data in Table 11 that the substitution of a methyl group onto the cyclopentadienyl ring practically does not affect elimination of the first CO group and the bromine atom from the molecular ion. However, the presence of the methyl group gives rise to expulsion of a hydrogen bromide molecule from the ion $[M - 2CO]^*$ which results in the most abundant ion $[CH_2C_5H_4ReBr]^*$ (m/e 344) (Scheme 5). The latter appears to have the fulvene structure similar to that proposed by us earlier for the ion $[M - HX]^*$ in the mass spectrum of CH_{3^-} $C_5H_4TiX_3$ (X = Cl, Br).

The presence of the methoxycarbonyl group on the cyclopentadienyl ring leads to certain specific features in the fragmentation pattern of the molecular ion of $CH_3OOCC_5H_4Re(CO)_2Br_2$ under electron impact (Scheme 6). Together with abundant processes of elimination of the CO groups and the bromine atom the loss of the methoxyl radical is observed from the molecular ion. A known

439

SCHEME 6

process of migration of the methoxyl group to the metal atom leads to the ion $[CH_3OReBr_2]^*$ with m/e 378 [12]. The loss of HBr from the latter yields the ion $[CH_2OReBr]^*$ (m/e 296). The elimination of formaldehyde described earlier for ferrocenyl ester [12] leads in this particular case to the ion $[C_5H_4COReHBr_2]^*$ (m/e 440) further decomposition of which results in the ion $[C_5H_4Re]^*$ (m/e 251). A similar process of CH_2O elimination is also found from the ion $[CH_3OOC-C_5H_4Re]^*$.

An unusual expulsion of the acetyl group from the $[M - 2CO]^+$ ion should be emphasized. The ion $[C_5H_4OReBr_2]^+$ with m/e 427 formed thereby further loses the oxygen atom yielding the ion $[C_5H_4ReBr_2]^+$ (m/e 411).

The presence of the abundant ions $[IC_5H_4ReI]^*$ (*m/e* 505), $[IC_3H_2ReI]^*$ (*m/e* 479) and $[C_5H_5Re(CO)_2I]^*$ (*m/e* 435) is characteristic of the mass spectrum of $IC_5H_4Re(CO)_2Br_2$. The formation of the ions mentioned appears to be due to substitution of bromine for iodine, this process taking place in the gas phase.

Experimental

The mass spectra were run on the mass spectrometer MX1303 provided with a direct inlet system at 30-90°C; the temperature of the ionizing chamber was 150°C. The ionizing voltage was 50, 30 and 15 eV.

References

- 1 A.N. Nesmeyanov, N.E. Kolobova, K.N. Anisimov and Yu.V. Makarov, Z. Obsh. Khim., 44 (1974) 2222.
- 2 A.N. Nesmeyanov, Yu.S. Nekrasov, N.P. Avakyan and LI. Kritskaya, J. Organometal. Chem., 33 (1971) 375.
- 3 A.N. Nesmeyanov, Yu.S. Nekrasov, V.F. Sizoi, O.V. Nogina, V.A. Dubovitsky and Ye.I. Sirotkina, J. Organometal. Chem., 61 (1973) 225.
- 4 M.I. Bruce, Advan. Organometal. Chem., 6 (1968) 288.
- 5 M. Cais and M.S. Lupin, Advan. Organometal. Chem., 8 (1970) 284.
- 6 G.A. Junk, H.J. Svec and R.J. Angelici, J. Amer. Chem. Soc., 90 (1968) 5758.
- 7 S. Pignataro, G. Distefano, G. Nencini and A. Foffani, Int. J. Mass Spectrom. Ion Phys., 3 (1970) 479.
- 8 R.B. King, Can. J. Chem., 47 (1969) 559.
- 9 R.B. King, J. Amer. Chem. Soc., 90 (1968) 1417.
- 10 R.B. King, Org. Mass Spectrom., 2 (1969) 657.
- 11 A.T.T. Heich, Int. J. Mass Spectrom. Ion Phys., 7 (1971) 297.
- 12 D.T. Roberts, W.T. Little and M.M. Bursey, J. Amer. Chem. Soc., 89 (1967) 6156.